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Abstract. Within the color dipole gBFKL phenomenology of the diffraction slope we predict an anomalous
t-dependence of the differential cross section dσ/dt as a function of energy and Q2 for the production of
radially excited V ′(2S) light vector mesons. The pattern we found for the t-dependence for dσ/dt is in
contradiction with the well-known standard monotonical t-behavior for the V (1S) vector mesons. The
origin of this phenomenon lies in the interplay of the nodal structure of the V ′(2S) radial wave function
and the energy and dipole size dependence of the color dipole cross section and the diffraction slope. We
show how a different position of the node in the V ′(2S) wave function leads to a different pattern of
anomalous t-behavior of dσ/dt and discuss the possibility to determine this position from the low energy
and HERA data.

1 Introduction

The diffractive photo- and electroproduction of ground
state (V (1S)) and radially excited (V ′(2S)) vector
mesons,

γ∗p → V (V ′)p V = ρ, Φ, ω, J/Ψ, Υ · · ·
(V ′ = ρ′, Φ′, ω′, Ψ ′, Υ ′ · · ·), (1)

at high c.m.s. energy W = s1/2, intensively studied by the
recent experiments at HERA, represents one of the main
sources for the further development of pomeron physics.
Pomeron exchange in the diffractive leptoproduction of
vector mesons at high energies has been intensively stud-
ied [1–9] within the framework of perturbative QCD
(pQCD).

The standard approach to pQCD is based on the
BFKL equation [10–12], which represents the integral
equation for the leading-log s (LLs) evolution of the gluon
distribution, formulated in the scaling approximation of
the infinite gluon correlation radius Rc → ∞ (massless
gluons) and of the fixed running coupling αS = const.
Later, however, a novel s-channel approach to the LLs
BFKL equation (the running gBFKL approach) has been
developed [13,14] in terms of the color dipole cross section
σ(ξ, r) (hereafter r is the transverse size of the color dipole,
ξ = log(W 2 + Q2)/(m2

V + Q2) is the rapidity variable)
which consistently incorporates the asymptotic freedom
(AF) (i.e. the running QCD coupling αS(r)) and the finite
propagation radius Rc of perturbative gluons. The freezing
of αS(r), αS(r) ≤ αfr

S , and the gluon correlation radius Rc
represent the nonperturbative parameters, which describe

the transition from the soft (nonperturbative, infrared) to
the hard (perturbative) region.

The details of the gBFKL phenomenology of diffractive
electroproduction of light vector mesons are presented in
[15]. The color dipole phenomenology of the diffraction
slope for photo- and electroproduction of heavy vector
mesons has been developed in [16]. The analysis of the
diffractive production of light [6,15] and heavy [16] vec-
tor mesons at t = 0 within the gBFKL phenomenology
shows that the V (1S) vector meson production amplitude
probes the color dipole cross section at the dipole size
r ∼ rS (scanning phenomenon [17,4–6]), where the scan-
ning radius can be expressed through the scale parameter
A:

rS ≈ A√
m2

V + Q2
, (2)

where Q2 is the photon virtuality, mV is the vector meson
mass and A ≈ 6. Consequently, changing Q2 and the mass
of the produced vector meson one can probe the dipole
cross section σ(ξ, r) and the dipole diffraction slope B(ξ, r)
and thus measure the effective intercept ∆eff(ξ, r) =
∂ log σ(ξ, r)/∂ξ and the local Regge slope α′

eff(ξ, r) =
(1/2)∂B(ξ, r)/∂ξ in a very broad range of the dipole size
r. This fact allows one to study the transition from large
nonperturbative dipole size rS � Rc to the perturbative
region of very short rS � Rc.

The experimental investigation of the electroproduc-
tion of radially excited V ′(2S) vector mesons can provide
additional information on the dipole cross section and the
dipole diffraction slope.
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The presence of the node in the V ′(2S) radial wave
function leads to a strong cancellation of dipole size contri-
butions to the production amplitude from the region above
and below the node position rn (the node effect [2,17,4,
18,15,16]). For this reason the amplitudes for the electro-
production of the V (1S) and V ′(2S) vector mesons probe
σ(ξ, r) and B(ξ, r) in a different way. The onset of a strong
node effect has been demonstrated in [15], where the study
of the electroproduction of V ′(2S) light vector mesons has
shown a very spectacular pattern of anomalous Q2 and en-
ergy dependence for the production cross section. For the
electroproduction of V ′(2S) heavy vector mesons the node
effect becomes much weaker but still leads to a slightly dif-
ferent Q2- and energy dependence of the production cross
section for Ψ ′ versus J/Ψ and to a nonmonotonical Q2-
dependence of the diffraction slope at small Q2 � 5 GeV2

for Ψ ′ production [16]. Another manifestation of the node
effect experimentally confirmed at HERA (and at fixed
target experiments as well) in J/Ψ and Ψ ′ photoproduc-
tion is a strong suppression of the diffractive production
of V ′(2S) versus V (1S). The stronger the node effect, the
smaller is the V ′(2S)/V (1S) ratio of the production cross
sections. The node effect also leads to a counterintuitive
inequality, B(γ∗ → Ψ ′) � B(γ∗ → J/Ψ) [16], which can
be tested at HERA. Therefore, it is very important to
further explore the salient features of the node effect in
conjunction with the emerging gBFKL phenomenology of
the diffraction slope [19,20,16], especially in the produc-
tion of V ′(2S) light vector mesons where the node effect
is expected to be very strong. An anomalous energy and
Q2-dependence of the diffraction slope for the production
of V ′(2S) light vector mesons has recently been studied in
[21]. We found a correspondence between a specific non-
monotonic Q2 and energy behavior of the diffraction slope
and the position of the node in the V ′(2S) radial wave
function. Moreover, we demonstrated that the above coun-
terintuitive inequality found for the production of heavy
vector mesons is not always valid for the production of
light vector mesons.

In the present paper we concentrate on the model pre-
dictions for the differential cross sections dσ(γ∗ →
V (1S))/dt and dσ(γ∗ → V ′(2S))/dt at different energies
and Q2 and discuss for the first time how the explicit pat-
tern of anomalous t behavior of dσ(γ∗ → V ′(2S))/dt is
connected with the position of the node in the radial wave
function. We predict a strikingly different t-dependence of
the differential cross section at different energies and Q2

for the production of V ′(2S) versus V (1S) vector mesons.
The pattern we found for the anomalous t-behavior for
dσ(γ∗ → V ′(2S))/dt can be tested at HERA.

This paper is organized as follows. In Sect. 2 we present
a very short description of the color dipole phenomenol-
ogy of diffractive photo- and electroproduction of vector
mesons and the main results of the gBFKL phenomenol-
ogy of the diffraction slope. In Sect. 3 we present the model
predictions for the differential cross sections dσ(γ∗ →
V (1S))/dt and dσ(γ∗ → V ′(2S))/dt at different Q2 and
energies, and we discuss how the position of the node in
the V ′(2S) radial wave function can be extracted from

the data. The summary and conclusions are presented in
Sect. 4.

2 Short review of the color dipole
phenomenology for vector meson production
and the diffraction slope

In the mixed (r, z)-representation the high energy meson
is considered as a system of a color dipole described by the
distribution of the transverse separation r of the quark and
antiquark given by the qq̄ wave function Ψ(r, z), where z is
the fraction of the meson’s light-cone momentum carried
by a quark. The Fock state expansion for the relativistic
meson starts with the qq̄ state, and the higher Fock states
qq̄g · · · become very important at high energy. The inter-
action of the relativistic color dipole of the dipole size r
with the target nucleon is quantified by the energy de-
pendent color dipole cross section σ(ξ, r) satisfying the
gBFKL equation [13,14] for the energy evolution. This
reflects the fact that in the leading-log 1/x approxima-
tion the effect of higher Fock states can be reabsorbed
into the energy dependence of σ(ξ, r). The dipole cross
section is flavor independent and represents the univer-
sal function of r which describes various diffractive pro-
cesses in unified form. At high energy when the transverse
separation r of the quark and antiquark is frozen during
the interaction process, the scattering matrix describing
the qq̄–nucleon interaction becomes diagonal in the mixed
(r, z)-representation (z is known also as the Sudakov light-
cone variable). This diagonalization property exists even
when the dipole size r is large, i.e. beyond the perturba-
tive region of short distances. The detailed discussion of
the space-time pattern of diffractive electroproduction of
vector mesons is presented in [16,15].

Following the advantage of the (r, z)-diagonalization
of the qq̄–N scattering matrix, the imaginary part of the
production amplitude for the real (virtual) photoproduc-
tion of vector mesons with momentum transfer q can be
represented in the factorized form

ImM(γ∗ → V, ξ,Q2,q)
= 〈V |σ(ξ, r, z,q)|γ∗〉

=

1∫
0

dz
∫

d2rσ(ξ, r, z,q)Ψ∗
V (r, z)Ψγ∗(r, z) (3)

the normalization of which is dσ/dt|t=0 = |M|2/16π. In
(3), Ψγ∗(r, z) and ΨV (r, z) represent the probability am-
plitudes to find a color dipole of size r in the photon and
quarkonium (vector meson), respectively. The color dipole
distribution in (virtual) photons was derived in [22,13].
σ(ξ, r, z,q) is the scattering matrix for the qq̄–N interac-
tion and represents the above mentioned color dipole cross
section for q = 0. The color dipole cross section σ(ξ, r) de-
pends only on the dipole size r. For small q, as considered
in this paper, one can safely neglect the z-dependence of
σ(ξ, r, z,q) for light and heavy vector meson production
and set z = 1/2. This follows partially from the analysis
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within a double gluon exchange approximation [22] lead-
ing to a slow z-dependence of the dipole cross section.

The energy dependence of the dipole cross section is
quantified in terms of the dimensionless rapidity ξ = log 1/
xeff ; xeff is the effective value of the Bjorken variable

xeff =
Q2 + m2

V

Q2 + W 2 ≈ m2
V + Q2

2νmp
, (4)

where mp and mV is the proton mass and mass of the vec-
tor meson, respectively. Hereafter, we will write the energy
dependence of the dipole cross section in both variables,
either in ξ or in xeff whatever seems convenient.

The production amplitudes for the transversely (T)
and the longitudinally (L) polarized vector mesons with
small momentum transfer q can be written in more ex-
plicit form [6,16]:

ImMT(xeff , Q
2,q)

=
NcCV

√
4παem

(2π)2

∫
d2rσ(xeff , r,q)

×
∫ 1

0

dz
z(1 − z)

{
m2

qK0(εr)φ(r, z) − [z2 + (1 − z)2]

×εK1(εr)∂rφ(r, z)}
=

1
(m2

V + Q2)2

∫
dr2

r2
σ(xeff , r,q)

r2
WT(Q2, r2) (5)

ImML(xeff , Q
2,q)

=
NcCV

√
4παem

(2π)2
2
√
Q2

mV

∫
d2rσ(xeff , r,q)

∫ 1

0
dz

×{
[m2

q + z(1 − z)m2
V ]K0(εr)φ(r, z) − ∂2

rφ(r, z)
}

=
1

(m2
V + Q2)2

2
√
Q2

mV

∫
dr2

r2
σ(xeff , r,q)

r2
WL(Q2, r2),

(6)

where
ε2 = m2

q + z(1 − z)Q2; (7)

αem is the fine structure constant, Nc = 3 is the number
of colors, CV = 1/21/2, 1/(3

√
2), 1/3, 2/3, 1/3 for ρ0, ω0,

φ0, J/Ψ, Υ production, respectively, and the K0,1(x) are
the modified Bessel functions. The detailed discussion and
parameterization of the light-cone radial wave function
φ(r, z) of the qq̄ Fock state of the vector meson is given in
[15].

The terms ∝ εK1(εr)∂rφ(r, z) for (T) polarization and
∝ K0(εr)∂2

rΦ(r, z) for (L) polarization in the integrands
of (5) and (6) represent the relativistic corrections; these
become important at large Q2 and for the production of
light vector mesons. For the production of heavy quarko-
nia, the nonrelativistic approximation can be used with a
rather high accuracy [2].

For small dipole size and q = 0 in the leading-log 1/x
approximation the dipole cross section can be related to
the gluon structure function G(x, q2) of the target nucleon
through

σ(x, r) =
π2

3
r2αs(r)G(x, q2), (8)

where the gluon structure function enters at the factor-
ization scale q2 ∼ B/r2 [23] with the parameter B ∼ 10
[24].

The weight functions WT(Q2, r2) and WL(Q2, r2) in-
troduced in (5) and (6) have a smooth Q2-behavior [6] and
are very convenient for the analysis of the scanning phe-
nomenon. They are sharply peaked at r ≈ AT,L/(Q2 +
m2

V )1/2. At small Q2 the values of the scale parameter
AT,L are close to A ∼ 6, which follows from rS = 3/ε with
the nonrelativistic choice z = 1/2. In general, AT,L ≥ 6
and increases slowly with Q2 [6]. For the production of
light vector mesons the relativistic corrections play an
important role, especially at large Q2 � m2

V , and they
lead to a Q2-dependence of AL,T coming from the large
size asymmetric qq̄-configurations AL(ρ0;Q2 = 0) ≈ 6.5,
AL(ρ0;Q2 = 100 GeV2) ≈ 10, AT(ρ0;Q2 = 0) ≈ 7,
AT(ρ0, Q2 = 100 GeV2) ≈ 12 [6]. Due to an extra fac-
tor z(1− z) in the integrand of (6) in comparison with (5)
the contribution from asymmetric qq̄-configurations to the
longitudinal meson production is considerably smaller.

The integrands in (5) and (6) contain the dipole cross
section σ(ξ, r,q). As was already mentioned, due to a very
slow onset of the pure perturbative region (see (2)) one can
easily anticipate a contribution to the production ampli-
tude coming from the semiperturbative and nonperturba-
tive r � Rc. Following the simplest assumption about the
additive property of the perturbative and nonperturbative
mechanism of interaction we can represent the contribu-
tion of the bare pomeron exchange to σ(ξ, r,q) as a sum
of the perturbative and nonperturbative components1:

σ(ξ, r,q) = σpt(ξ, r,q) + σnpt(ξ, r,q), (9)

with the parameterization of both components at small q

σpt,npt(ξ, r,q) =

σpt,npt(ξ, r,q = 0) exp
(

−1
2
Bpt,npt(ξ, r)q2

)
. (10)

Here σpt,npt(ξ, r,q = 0) = σpt,npt(ξ, r) represent the con-
tributions of the perturbative and nonperturbative mech-
anisms to the qq̄–nucleon interaction cross section, re-
spectively; Bpt(ξ, r) and Bnpt(ξ, r) are the corresponding
dipole diffraction slopes.

The small real part of the production amplitudes can
be taken in the form [25]

ReM(ξ, r) =
π

2
∂

∂ξ
ImM(ξ, r), (11)

and can easily be included in the production amplitudes
(5) and (6) using the substitution

σ(xeff , r,q) →
(

1 − i
π

2
∂

∂ log xeff

)
σ(xeff , r)

= [1 − iαV (xeff , r)]σ(xeff , r,q). (12)

1 The additive property of such a decomposition of the dipole
cross section has been already discussed in [15,16]
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The formalism for the calculation of σpt(ξ, r) in the lead-
ing-log s approximation was developed in [22,13,14]. The
contribution σnpt(ξ, r) to the dipole cross section was used
in [26,6,15,16], where we assumed that this soft nonper-
turbative component of the pomeron is a simple Regge
pole with intercept ∆npt = 0. The particular form to-
gether with the assumption of the energy independent
σnpt(ξ = ξ0, r) = σnpt(r) (ξ0 corresponds to the bound-
ary condition for the gBFKL evolution: ξ0 = log(1/x0),
x0 = 0.03) allows one to successfully describe the proton
structure function at very small Q2 [26], the real pho-
toabsorption [6] and the diffractive real and virtual pho-
toproduction of light [15] and heavy [16] vector mesons.
A larger contribution of the nonperturbative pomeron ex-
change to σtot(γp) versus σtot(γ∗p) can, for example, ex-
plain the much slower rise with energy of the real pho-
toabsorption cross section σtot(γp) in comparison with
F2(x,Q2) ∝ σtot(γ∗p) observed at HERA [27,28]. Be-
sides, the reasonable form of σnpt(r) was confirmed in the
process of the first determination of the dipole cross sec-
tion from the data on vector meson electroproduction [29].
The energy and dipole size dependence of the extracted
σ(ξ, r) is in a good agreement with the dipole cross sec-
tion obtained from the gBFKL dynamics [6,26]. The non-
perturbative component of the pomeron exchange plays a
dominant role at low NMC energies in the production of
the light vector mesons, where the scanning radius rS, see
(2), is large. However, the perturbative component of the
pomeron becomes more important with the rise of energy
also in the nonperturbative region of the dipole size.

If one starts with the familiar impact-parameter rep-
resentation for the amplitude of elastic scattering of the
color dipole,

ImM(ξ, r,q) = 2
∫

d2b exp(−iqb)Γ (ξ, r,b), (13)

then the diffraction slope B = −2d log ImM/dq2|q=0
equals

B(ξ, r) =
1
2
〈b 2〉 = λ(ξ, r)/σ(ξ, r), (14)

where

λ(ξ, r) =
∫

d2bb2Γ (ξ, r,b). (15)

The generalization of the color dipole factorization for-
mula (3) to the diffraction slope of the reaction γ∗p → V p
reads

B(γ∗ → V, ξ,Q2)ImM(γ∗ → V, ξ,Q2,q = 0)

=

1∫
0

dz
∫

d2rλ(ξ, r)Ψ∗
V (r, z)Ψγ∗(r, z). (16)

The diffraction cone in the color dipole gBFKL ap-
proach for the production of vector mesons has been stud-
ied in detail in [16]. Here we only present the salient fea-
ture of the color diffraction slope emphasizing the pres-
ence of the geometrical contribution from the beam dipole,

r2/8, and the contribution from the target proton size,
R2

N/3:

B(ξ, r) =
1
8
r2 +

1
3
R2

N + 2α′
IP(ξ − ξ0) + O(R2

c), (17)

where RN is the radius of the proton. For the electro-
production of light vector mesons the scanning radius is
larger than the correlation one, r � Rc, even for Q2 �
50 GeV2, and one recovers a sort of additive quark model,
in which the uncorrelated gluonic clouds build up around
the beam and target quarks and antiquarks and the term
2α′

IP(ξ − ξ0) describes the familiar Regge growth of the
diffraction slope for the quark–quark scattering. The ge-
ometrical contribution to the diffraction slope from the
target proton size (1/3)R2

N persists for all the dipole sizes
r � Rc and r � Rc. The last term in (17) is also associated
with the proton size and is negligibly small.

The soft pomeron and diffractive scattering of a large
color dipole have also been studied in detail in [16]. Here
we assume the conventional Regge rise of the diffraction
slope for the soft pomeron [16]

Bnpt(ξ, r) = ∆Bd(r) + ∆BN + 2α
′
npt(ξ − ξ0), (18)

where ∆Bd(r) and ∆BN stand for the contribution from
the beam dipole and target nucleon size. As a guidance we
take the experimental data on the pion–nucleon scattering
[30], which suggest α′

npt = 0.15 GeV−2. In (18) the proton
size contribution is

∆BN =
1
3
R2

N , (19)

and the beam dipole contribution has been proposed to
have the form [16]

∆Bd(r) =
r2

8
r2 + aR2

N

3r2 + aR2
N

, (20)

where a is a phenomenological parameter, a ∼ 1. We
take ∆BN = 4.8 GeV−2. Then the pion–nucleon diffrac-
tion slope is reproduced with a reasonable value of the
parameter a in (20): a = 0.9 for α′

npt = 0.15 GeV−2.
Following the simple geometrical properties of the

gBFKL diffraction slope B(ξ, r) (see (17) and [19]) one
can express its energy dependence through the energy de-
pendent effective Regge slope α′

eff(ξ, r)

Bpt(ξ, r) ≈ 1
3
〈R2

N 〉 +
1
8
r2 + 2α′

eff(ξ, r)(ξ − ξ0). (21)

The effective Regge slope α′
eff(ξ, r) varies with energy dif-

ferently at different dipole sizes [19]. At fixed scanning ra-
dius and/or Q2+m2

V , it decreases with energy. At fixed ra-
pidity ξ and/or xeff , see (4), α′

eff(ξ, r) rises with r � 1.5 fm.
At fixed energy it is a flat function of the scanning ra-
dius. At asymptotically large ξ (W ), α′

eff(ξ, r) → α′
IP =

0.072 GeV−2. At lower and HERA energies the subasymp-
totic α′

eff(ξ, r) ∼ (0.15–0.20) GeV−2 and is very close to
α′

soft known from the Regge phenomenology of soft scat-
tering. This means that the gBKFL dynamics predicts
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a substantial rise with the energy and dipole size of the
diffraction slope B(ξ, r) in accordance with the energy
and dipole size dependence of the effective Regge slope
α′

eff(ξ, r) and due to the presence of the geometrical com-
ponents ∝ r2 in (17) and ∆Bd(r) ∝ r1.7 in (18) (see also
(20))2. The overall dipole diffraction slope contains con-
tributions from both Bnpt(ξ, r) and Bpt(ξ, r) and the cor-
responding geometrical component has rα-behavior with
1.7 < α � 2.0. Therefore, for discussions on the quali-
tative level in the subsequent section we assume (with a
quite reasonable accuracy) an approximate r2-dependence
of the geometrical component contribution to the dipole
diffraction slope.

Using the expressions (5) and (6) for the (T) and (L)
production amplitudes in conjunction with (9), (10), (18)
and (21) we can calculate the differential cross section of
the vector meson electroproduction as a function of t.

3 Anomalous t-dependence
of the differential cross section
for the production of V ′(2S) vector mesons

The most important feature for V ′(2S) vector meson pro-
duction is the node effect – the Q2- and energy dependent
cancellations from the soft (large size) and hard (small
size) contributions (i.e. from the region above and below
the node position, rn) to the V ′(2S) production ampli-
tude. The strong Q2-dependence of these cancellations
comes from the scanning phenomenon (2) when the scan-
ning radius rS for some value of Q2 is close to rn ∼ RV

(RV is the vector meson radius). The energy dependence
of the node effect is due to a different energy dependence
of the dipole cross section at small (r < RV ) and large
(r > RV ) dipole sizes. We would like to emphasize from
the very beginning that in the region of energy and Q2

where the exact node effect is encountered the predic-
tive power becomes weak and the predictions are strongly
model dependent. The model predictions for V ′(2S) vec-
tor mesons presented in this section serve mostly as an
illustration of a possible anomalous Q2 and energy depen-
dence3.

There are several reasons to expect that for the pro-
duction of V ′(2S) light vector mesons the node effect de-
pends on the polarization of the virtual photon and of
the produced vector meson [15]. First, the wave functions
of (T) and (L) polarized (virtual) photons are different.
Second, different regions of z contribute to MT and ML.

2 The dipole size behavior of ∆Bd(r) (20) representing
the geometrical contribution to the dipole diffraction slope
Bnpt(ξ, r) (18) for diffractive scattering of a large color dipole
has the standard r2-dependence at small, r2 � aR2

N , and large,
r2 � aR2

N , values of the dipole size, respectively. In the in-
termediate region, r2 ∼ aR2

N , which corresponds to the pro-
duction of V (1S) and V ′(2S) light vector mesons, the dipole
size dependence of ∆Bd(r) can be parameterized by the power
function rα with α ∼ 1.7

3 Manifestations of the node effect in electroproduction on
nuclei were discussed in [18,31]

Third, different scanning radii for the production of (T)
and (L) polarized vector mesons and the different energy
dependence of σ(ξ, r) at these scanning radii lead to a dif-
ferent Q2 and energy dependence of the node effect in the
production of (T) and (L) polarized V ′(2S) vector mesons.
Not so for the nonrelativistic limit of heavy quarkonia,
where the node effect is very weak and is approximately
polarization independent. There is only a weak polariza-
tion dependence of the node effect for Ψ ′ production [16].
For Υ ′ production the node effect is negligibly small and
is almost polarization independent.

There are two possible scenarios for the node effect
which can occur in the V ′(2S) production amplitude: the
undercompensation and the overcompensation scenario
[18].

In the undercompensation scenario, the V ′(2S) pro-
duction amplitude 〈V ′(2S)|σ(ξ, r)|γ∗〉 is dominated by the
positive contribution coming from small dipole sizes, r �
rn, and the V (1S) and V ′(2S) photoproduction ampli-
tudes have the same sign. This scenario corresponds
namely to the production of V ′(2S) heavy vector mesons
Ψ ′(2S) and Υ ′(2S). In the overcompensation scenario, the
V ′(2S) production amplitude is dominated by the nega-
tive contribution coming from large dipole sizes, r � rn,
and the V (1S) and V ′(2S) photoproduction amplitudes
have opposite sign4.

The anomalous properties of the diffraction slope were
recently studied in [21] and come from the expression (16),
which can be rewritten as the ratio of two matrix elements:

B(γ∗ → V (V ′), ξ, Q2)

=

1∫
0

dz
∫

d2rΨ∗
V (V ′)(r, z)σ(ξ, r)B(ξ, r)Ψγ∗(r, z)

1∫
0

dz
∫

d2rΨ∗
V (V ′)(r, z)σ(ξ, r)Ψγ∗(r, z)

. (22)

The production amplitude in the denominator of (22)
is dominated by the contribution from the dipole size cor-
responding to the scanning radius rS (2). However, due
to the approximately ∝ r2 behavior of the dipole diffrac-
tion slope (see the discussion in Sect. 2), the integrand of
the matrix element in the numerator of (22), is peaked by
r = rB ∼ 5/3rS > rS.

Let us discuss now the possible peculiarities in the t-
dependence of the differential cross section dσ/dt for the
V ′(2S) production. Because of an approximate ∝ r2 be-
havior of the geometrical contribution to the diffraction
slope, the large size negative contribution to the produc-
tion amplitude from the region above the node position
corresponds to a larger value of the diffraction slope than
the small size contribution from the region below the node
position. This means that the negative contribution to the
V ′(2S) production amplitude has a steeper t-dependence
than the positive contribution. This can be understood
in a somewhat demonstrative form when the t-dependent
production amplitude reads

4 A discussion of the experimental determination of the rela-
tive sign of the V ′(2S) and V (1S) production amplitudes using
the so-called Söding–Pumplin effect [32,33] is presented in [15]
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Fig. 1. The color dipole model predictions for the differential
cross sections dσ(γ∗ → V (V ′))/dt for the real photoproduction
(Q2 = 0) of ρ0, ρ′(2S), φ0 and φ′(2S) at different values of the
c.m.s. energy W

M(t) = α exp
(

−1
2
B1t

)
− β exp

(
−1

2
B2t

)
, (23)

where α and β represent the contributions to the matrix
element from the region below and above the node po-
sition with the corresponding effective diffraction slopes
B1 and B2, respectively (B1 < B2). Consequently, the
inequality α > β corresponds to the undercompensation
whereas α < β is associated with the overcompensation
regime. The destructive interference of these two contribu-
tions results in a decrease of the effective diffraction slope
for the V ′(2S) meson production towards small t, con-
trary to the familiar increase for the V (1S) meson pro-
duction. Such a situation is shown in Fig. 1, where we
present the model predictions for the differential cross
section dσ(γ∗ → V (V ′))/dt for the production of the
V (1S) and V ′(2S) mesons at different c.m.s. energies W
and at Q2 = 0. The real photoproduction measures the
purely transverse cross section. Using the vector meson
wave functions from [15] the forward production ampli-
tude (3) is in the undercompensation regime (positive
value). However, the matrix element in the numerator of
(22) is safely in the overcompensation regime (negative
value) (at W � 150 GeV for ρ′(2S) production and at
W � 30 GeV for φ′(2S) production) because of rB > rS.
As the result, we predict the negative value diffraction
slope at t = 0 and Q2 = 0. At t > 0 the node effect
becomes weaker. The higher t, the weaker is the node ef-
fect as a consequence of the destructive interference dis-
cussed above. Consequently, the differential cross section
first rises with t, and flattens off at t ∈ (0.0–0.2) GeV2,
having a broad maximum. At large t, the node effect is
weak and dσ(γ∗ → V ′(2S))/dt decreases with t monoton-
ically as for V (1S) production. The position of the maxi-
mum can be roughly evaluated from (23) and reads

tmax ∼ 1
B −A

log
[
β2

α2

B2

A2

]
, (24)

with the supplementary condition

Fig. 2. The color dipole model predictions for the differential
cross sections dσL,T(γ∗ → V ′(2S))/dt for transversely (T) (top
boxes) and longitudinally (L) (middle boxes) polarized radially
excited ρ′(2S), φ′(2S) and for the polarization-unseparated
dσ(γ∗ → V ′)/dt = dσT(γ∗ → V ′(2S))/dt + εdσL(γ∗ →
V ′(2S))/dt for ε = 1 (bottom boxes) at Q2 = 0.5GeV2 and
different values of the c.m.s. energy W

β

α
>

A

B
, (25)

where A = 2B1 and B = 2B2, A < B. If the condition
(25) is not fulfilled, dσ(γ∗ → V ′(2S))/dt has no maximum
and exhibits a standard monotonical t-behavior as for the
production of V (1S) mesons.

The predicted nonmonotonic t-behavior of the differ-
ential cross section for ρ′(2S) and φ′(2S) production in
the photoproduction limit is strikingly different, especially
at smaller energies, from the familiar decrease with t of
dσ(γ → ρ0(1S))/dt and dσ(γ → φ0(1S))/dt (see Fig. 1).
Here we cannot insist on the precise form of the t-depen-
dence of the differential cross sections; the main emphasis
is on the likely pattern of the t-dependence coming from
the node effect.

At larger energies, W � 150 GeV for the ρ′(2S) photo-
production and W � 30 GeV for φ′(2S) photoproduction,
the node effect becomes weaker and we predict the posi-
tive value diffraction slope at t = 0 because both the ma-
trix elements in (22) are positive valued. For this reason,
the nonmonotonic t-dependence of the differential cross
section is exchanged for the monotonic one, but still the
effective diffraction slope decreases slightly towards small
t (see Fig. 1).

Because of a possible overcompensation scenario for
ρ′
L(2S) and φ′

L(2S) mesons in the forward direction (t =
0) and at small Q2 (see [15]), we present in Fig. 2 the
model predictions for dσ(γ∗ → V ′(2S))/dt at different
energies W and at fixed Q2 = 0.5 GeV2 for the produc-
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tion of (T), (L) polarized and polarization-unseparated
ρ′(2S) and φ′(2S) mesons. As was mentioned above, at
Q2 = 0.5 GeV2, the node effect becomes weaker, the am-
plitudes for both ρ′

T(2S) and φ′
T(2S) production at t = 0

are in the undercompensation regime and the correspond-
ing slope parameters B(ρ′

T(2S)) and B(φ′
T(2S)) have a

positive value. For this reason, we predict the familiar t-
dependence of dσ(γ∗ → V ′

T(2S))/dt (see bottom boxes in
Fig. 2). The above mentioned maximum of dσ/dt is ab-
sent because of a weaker node effect and consequently the
condition (25) is not fulfilled.

However, at Q2 � 0.5 GeV2, the production ampli-
tude for ρ′

L(2S) and φ′
L(2S) in the forward direction (and

the matrix element 〈V ′
L(2S)|σ(ξ, r)B(ξ, r)|γ∗〉 as well) is

still in the overcompensation regime and the correspond-
ing diffraction slope B(V ′

L(2S)) has a positive value at
small energies, W � 20 GeV. This results in the very spec-
tacular pattern of anomalous t-dependence for dσ(γ∗ →
V ′

L(2S))/dt shown in Fig. 2 (middle boxes). With rising
t due to the above described destructive interference of
two contributions to the production amplitude with dif-
ferent t-dependences (see (23)), one encounters the exact
node effect at some t ∼ tmin. Consequently, the differential
cross section first falls rapidly with t, having a minimum
at t ∼ tmin. At still larger t, when the overcompensa-
tion scenario of the t-dependent production amplitude is
changed for the undercompensation one and the slope pa-
rameter becomes negatively valued, dσ(γ∗ → V ′

L(2S))/dt
rises with t and the further pattern of the t-behavior is
analogous to that for V ′

T(2S) production (see Fig. 1).
The position of the minimum in the differential cross

section is model dependent and can be roughly estimated
from (23):

tmin ∼ 1
B −A

log
[
β2

α2

]
. (26)

The gBFKL model predictions give tmin ∼ 0.03 GeV2

for ρ′
L(2S) production and tmin ∼ 0.05 GeV2 for φ′

L(2S)
production at Q2 = 0.5 GeV2 and at W = 5 GeV. How-
ever, we cannot exclude the possibility that this minimum
will be placed at other values of t. At Q2 < 0.5 GeV2, tmin
reaches larger values of t. At higher energy, the position of
tmin is shifted to a smaller value of t unless the exact node
effect is reached at t = 0. At still larger energy, when the
V ′

L(2S) production amplitude is in the undercompensa-
tion regime, this minimum disappears and we predict the
pattern of t-behavior for dσ(γ∗ → V ′

L(2S))/dt analogous
to that for dσ(γ → V ′

T(2S))/dt in the photoproduction
limit described in Fig. 1. These predicted anomalies can
be tested at HERA measuring the diffractive electropro-
duction of V ′(2S) light vector mesons in the separate (T)
and (L) polarizations.

4 Conclusions

We study the diffractive photo- and electroproduction of
the ground state V (1S) and radially excited V ′(2S) vec-
tor mesons within the color dipole gBFKL dynamics with

the main emphasis on the differential cross section dσ/dt.
There are two main consequences of vector meson produc-
tion coming from the gBFKL dynamics.

First, the energy dependence of the V (1S) vector me-
son production is controlled by the energy dependence of
the dipole cross section which is steeper for smaller dipole
sizes. The energy dependence of the diffraction slope for
V (1S) production is given by the effective Regge slope
with a small variation with energy.

Second, the Q2-dependence of the V (1S) vector meson
production is controlled by the shrinkage of the transverse
size of the virtual photon and the small dipole size depen-
dence of the color dipole cross section. The Q2-behavior
of the diffraction slope is given by the geometrical contri-
bution with an approximate ∼ r2 behavior coming from
the color dipole gBFKL phenomenology of the slope pa-
rameter.

As a consequence of the node in the V ′(2S) radial wave
function, we predict a strikingly different t-dependence of
the differential cross section for the production of V ′(2S)
versus V (1S) vector mesons. The origin of this is in the
destructive interference of the large distance negative con-
tribution to the production amplitude from the region
above the node position with a steeper t-dependence and
the small distance positive contribution to the production
amplitude from the region below the node position with
a weaker t-dependence. As a result, we predict at Q2 = 0
a nonmonotonic t-dependence of dσ(γ → V ′

T(2S))/dt and
a decreasing diffraction slope for V ′

T(2S) mesons towards
small values of t in contrast with the familiar increase for
the V (1S) mesons. The differential cross section dσ(γ →
V ′

T(2S))/dt first rises with t, having a broad maximum at
t ∼ tmax as given by (24). The position of the maximum is
model dependent and is shifted to smaller values of t with
rising energy and Q2 due to a weaker node effect. At larger
t when the node effect is still weaker, dσ(γ → V ′

T(2S))/dt
has the standard monotonic t-behavior as for the produc-
tion of V (1S) vector mesons. This pattern of the anoma-
lous t-dependence of dσ(γ → V ′

T(2S))/dt corresponds to
the undercompensation scenario for the production am-
plitude.

For the production of (L) polarized V ′
L(2S) mesons,

there is overcompensation at t = 0 leading to an ex-
act cancellation of the positive contribution from large
size dipoles and the negative contribution from small size
dipoles to the production amplitude and to a minimum
of the differential cross section at some value of t ∼ tmin.
The position of tmin is given by (25), is energy depen-
dent, and leads to a complicated pattern of anomalous
t-dependence for dσ(γ∗ → V ′

L(2S))/dt at fixed Q2. Con-
sequently, dσ(γ∗ → V ′

L(2S))/dt first falls with t having
a minimum at t ∼ tmin when the overcompensation sce-
nario is changed for the undercompensation one. The fol-
lowing pattern of t-behavior is then analogous to dσ(γ →
V ′

T(2S))/dt at Q2 = 0. These anomalies are also energy
and Q2-dependent and can be tested at HERA.

The experimental investigation of the t-dependent dif-
ferential cross section for real photoproduction (Q2 = 0)
of V ′(2S) vector mesons at fixed target and HERA exper-
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iments offers an unique possibility to make a choice be-
tween the undercompensation and overcompensation sce-
narios. The presence of the minimum in dσ(γ → V ′(2S))/
dt for a broad energy range corresponds to the overcom-
pensation scenario. Otherwise, the V ′(2S) production am-
plitude is in the undercompensation scenario.

The position of the node in the radial V ′(2S) wave
function can be tested also by the vector meson data with
the separate (L) and (T) polarizations at Q2 > 0. The
existence of a dip (minimum) (for a broad energy range)
in the t-dependent differential cross section is connected
again with the overcompensation scenario in the V ′(2S)
production amplitude. The broad maximum and/or the
standard monotonic t-behavior of dσ/dt leads one to pre-
fer the undercompensation scenario.
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